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Reaction zones and quenched charged-particle systems with long-range interactions

A. D. Rutenberg
Centre for the Physics of Materials, Physics Department, McGill University, 3600 rue University, Montre´al, Quebec, Canada H3A 2T8

~Received 30 April 1998!

We determine the evolving segregated or mixed morphology of charged-particle systems with long-range
power-law interactions and overall charge neutrality that have been quenched to a low temperature. Segregated
morphology systems are characterized by the size of uniformly charged domains,L(t), the particle separation
within the domains,l AA(t), the particle flux density leaving the domains,J(t), the width of reaction zones
between domains,W(t), the particle spacing within the reaction zones,l AB(t), and the particle lifetime in the
reaction zones,t(t). Mixed morphology systems are essentially one large reaction zone, withL; l AB; l AA .
By relating these quantities through the scaling behavior of particle fluxes and microscopic annihilation rates
within reaction zones, we determine the characteristic time exponents of these quantities at late times. The
morphology of the system, segregated or mixed, is also determined self-consistently. With this unified ap-
proach, we consider systems with diffusion and/or long-range interactions, and with either uncorrelated or
correlated high-temperature initial conditions. Finally, we discuss systems with particlelike topological defects
and electronic systems in various substrate dimensions—including quantum Hall devices with Skyrmions.
@S1063-651X~98!09909-7#

PACS number~s!: 82.20.Mj, 05.40.1j, 47.54.1r, 61.30.Jf
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I. INTRODUCTION

We consider reaction-diffusion systems without lon
range interactions@1–8# that involve two diffusing species o
particles which annihilate on contact,A1B→B. The tem-
perature is assumed to be low enough that the reverse
tion can be ignored, so that the densities at late times
determined by the disordered initial conditions. For eq
initial mean densities of the particles and antiparticles, th
are two known morphologies at late times@1#. The first, for
spatial dimensiond>4, is a well mixed morphology in
which mean-field dynamics applies to the particle dens

] tr̄52Cr̄2. This leads tor̄(t);1/t at late times. The sec
ond, for d,4, is a segregated morphology consisting
single-species domains of characteristic sizeL(t). The evo-
lution is via diffusive currents feeding particles from the d
mains into reaction zones where they are annihilated by
tiparticles. The evolution of the mean domain density,r̄
;t2d/4, is easily demonstrated ford.2 if the two species
have equal diffusion constants, so that the density differe
Dr[rA2rB satisfies a linear diffusion equation@1,2#. This
also applies more generally@3#.

In the mixed morphology, initial charge fluctuations d
cay faster than the mean particle density, and can be igno
In the segregated morphology, long-wavelength initial flu
tuations decay more slowly and asymptotically determine
domain structure. In that case, the profile of the domains
the structure of the reaction zone can be understood thro
the particle fluxes and the annihilation kinetics of partic
pairs @4–7#, as well as on a more formal level@3#.

It has been recognized from the beginning@1# that long-
range interactions between oppositely charged particles
antiparticles change the evolution of a reaction-diffus
system—both by changing the initial charge-density fluct
tions, and by changing the subsequent dynamics. Howe
progress has been gradual due to the greater complexi
PRE 581063-651X/98/58~3!/2918~13!/$15.00
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long-range interactions both in analytical models@9# and in
computer simulations, and by the need to understand
force-free case first. Nevertheless, progress in long-ra
models has been made along a number of fronts@10–18#. For
systems with long-range interactions but no diffusion, a
with uncorrelated initial conditions, Toyoki presented
analysis of a mixed morphology@10#. Complementing that
work, Ispolatov and Krapivsky@11# considered segregate
systems and simulated a variety of force-laws ind51. For
both long-range interactions and diffusion, with uncorrela
initial conditions, a self-consistent model by Ginzbur
Radzihovsky, and Clark@12# and a complementary scalin
model @13# has captured the density evolution forn>d21,
where n characterizes the force between particles viaf
;r 2n @see Eq.~1! below#. Then5d21 Coulombic case has
also been treated by Ohtsuki@14#. High-temperature corre
lated initial conditions have also been discussed@15#.

In this paper, we are interested in the late-time evolut
of initially random distributions of charges in homogeneo
systems with overall charge neutrality. We use the sca
behavior, with respect to length scale, of the initial char
fluctuations, the resulting large-scale currents, and the lo
annihilation rate of particles to determine both the morph
ogy and the time exponents of the characteristic lengths.
approach is based on the assumption that domain struc
are characterized by only two lengths: their sizeL(t) and
their characteristic particle separationl AA(t), where the av-
erage densityr̄; l AA

2d . This is comparable to the dynamica
scaling assumption of phase-ordering systems@19# and, with
appropriate physical input, leads to a self-consistent desc
tion of the system evolution. Between the domains, we all
for reaction zones of widthW(t), within which both particle
species are mixed with typical spacingl AB(t) and lifetimet.
For segregated systems, charged currents are absorbed
reaction zones. For mixed systems, the reaction zone
vades the system. Our approach of balancing currents
2918 © 1998 The American Physical Society



at

io

ti
s
, o
di
ll

n
n

bu
ly

ed

d
t
g
c
e
d
ni
ti
o
r-
n
o

er
a
te
ns

ro
e

nd
la

d

in

,

e

d

em

s

er

, or
ime

is

ec-

-

s

iffu-

s

e
ell

r-
ated
ed

ar-
in

the

in a
o

t

itial
c-

PRE 58 2919REACTION ZONES AND QUENCHED CHARGED- . . .
annihilation within reaction zones is in the spirit of the tre
ment of force-free systems by Redner and Leyvraz@7#; and
for these systems our results agree with the renormalizat
group analysis of Lee and Cardy@3#.

We ignore correlations apart from the characteris
lengths l AA , l AB , L, and W which determine the densitie
and sizes of the domains and reaction zones. As a result
approach is insensitive to early-time dynamics, unequal
fusion constants@20#, and motion of domain boundaries. A
of these factors help determine theamplitudeof the growth
laws. Nonetheless, from the scaling properties of curre
and lengths we can extract the asymptotic time expone
One benefit of our approach is that its conclusions are ro
to the details of the system, and that it provides a vivid
physical picture of the morphological evolution of charg
systems with long-range interactions.

We should emphasize what is new in this paper. We
not assume which morphology the system selects, but de
mine it self-consistently from the physics. We treat a lar
number of different cases with the same unified approa
including the well understood diffusion-only systems. W
determine the reaction-zone width and density, and also
cover nontrivial domain-edge profiles. For uncorrelated i
tial conditions, we discover several regimes where ballis
annihilation is the dominant annihilation mechanism. F
high-temperature equilibrium initial conditions, we dete
mine the appropriate initial charge-fluctuation spectrum a
show how it modifies the subsequent evolution and morph
ogy of the system.

In Sec. II, we introduce long-range interactions with ov
damped dynamics between initially random particles and
tiparticles. For equilibrium initial conditions, we calcula
the expected initial long-wavelength charge fluctuatio
characterized bym ~Sec. II A; see also Fig. 1!. From the
charge fluctuations, using a scaling form for the domain p
files near edges, we determine the scaling of charged curr
~Sec. II B; see also Table I and Fig. 2!. We then consider
various mechanisms of particle annihilation~Sec. II C; see
also Figs. 3 and 4!. We combine our results on currents a
on annihilation, by balancing the currents with the annihi
tion rates in the reaction zones~Sec. II D!. This is sufficient
to determine both the system morphology and the time
pendence of the domain sizeL and of the average density,r̄
~Fig. 5 and Table II!. We next consider the reaction zone
more detail, and determine its widthW and particle spacing
l AB , as well as the typical lifetimet within the reaction zone
~Sec. II E; see also Table III!. Finally we discuss our results
including implications for coarse-grained treatments~Sec.
II F!.

We discuss the previous reaction-diffusion literature~Sec.
III !, then discuss applying our results to electrically charg
(n52) systems in various substrate dimensions~Sec. IV!.
We emphasize that, ford,3, interesting new decay laws an
segregated morphologies are found. We then discuss the
plication of our results to quenched phase-ordering syst
with pointlike topological defects~Sec. V!. We can also ex-
tend our approach to include Le´vy superdiffusive systems, a
well as subdiffusive systems~Sec. VI!.

The effect of short-range cutoffs on the power-law int
actions can easily be treated~Sec. VII!. We numerically ex-
plore our results on domain profiles~Sec. VIII; see also Fig.
-
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6!. Finally, we conclude~Sec. IX!.
Throughout this paper we concentrate on exponents

scaling dependencies, of various quantities in the late-t
limit. Inequalities apply to exponents, so that a process
dominant if it is asymptotically largest ast→`. We denote
the mechanisms with a subscriptD, F, or B for diffusive,
local-force-driven, or long-range ballistic processes, resp
tively.

II. LONG-RANGE INTERACTIONS

We work in the overdamped limit, in which particle ve
locity equals the applied force times a constant mobility,h.
The pairwise forces are

f i j 5Cqiqj /r i j
n ~1!

between particles with charges$qi% and pairwise separation
$r i j %. This corresponds to a pairwise interaction energyEi j

5Cqiqj r i j
12n/(n21), with a logarithm atn51. Thus the

particle velocity is

] trW i5h(
j Þ i

f i j r̂ i j 1fW i , ~2!

where we have added a random uncorrelated noise for d
sive motion with diffusion constantD, where ^fW i(t)
•fW j (t8)&5Dd i j d(t2t8). When oppositely charged particle
approach within a fixed capture radiusr c , they annihilate
instantaneously@21#. We are interested in the behavior of th
system at late times when distinct length scales are w
separated.

A. Initial conditions

Most studies of reaction diffusion with long-range inte
actions have focused on the case of random uncorrel
initial conditions, where the particles are randomly plac
with a local Poisson distribution@10–14,16–18#. Experimen-
tally, it is more natural to quench a system of charged p
ticles from a high-temperature state in which they are
thermal equilibrium@1,15#.

Charge fluctuations may be usefully characterized by
typical charge density at scaleL,

dr;L2m. ~3!

This can be thought of as the excess charge density
region of sizeL after coarse graining to that scale. It is als
related to the magnitude of the Fourier componentr1/L of the
charge density by

ur1/Lu;Ld/22m, ~4!

as obtained by summing upO(L`
d /Ld) uncorrelated contri-

butions of sizeLddr(L), and normalizing out the constan
contribution due to the system size,L` . As a result we can
obtainm directly from rk .

We are only interested in the scale dependence of in
charge fluctuations that survive for long times—i.e., for flu
tuations at large scales and correspondingly smallk. Hence
we consider a continuum charge densityr(r ) with energy



e
g

a

u

e

te
o

, p
ith
.

a
e
th
ia

u
e
na

-
ap-

les

rger
nts.
the
sys-

ain,
e

f by

sity

ec-

by

ol-
se-
x
the

in-

ing

o-

s,
cal

ion

tia
g

2920 PRE 58A. D. RUTENBERG
E5C̃/2E ddrddr 8r~r !r~r 8!/ur 2r 8un21

5C̃/2E ddk

~2p!d
rkr2kek . ~5!

From ek[*ddxeik•xx12n, we obtain ek
5pd/2(k/2)n212dG@(d112n)/2#/G@(n21)/2# for 1,n
,d11. For n>d11 we must introduce an UV cutoff, th
inverse particle separation@22#, which determines a leadin
ek5const small-k behavior. Forn51 the interaction in Eq.
~5! should be logarithmic, and we obtainek
5pd/22d21k2dG(d/2). Imposing equipartition on Eq.~5!
with temperatureT, we obtain^rkr2k&;kBT/ek .

This derivation reproduces the small-k behavior of a more
complete variational approach; see, e.g., Ref.@23#. Entropy
factors do not affect the leading long-wavelength fluctu
tions, so that the integrand in Eq.~5! is correct for smallk.
This means thatrk is Gaussian distributed fork→0, and
^urku&;ek

21/2. Comparing with Eq.~4!, we obtain

m5H ~2d112n!/2, 1<n,d11

d/2, n.d11.
~6!

This is illustrated in Fig. 1. Note thatd/2<m<d, so that
long-range interactions always suppress initial charge fl
tuations. The maximal suppression is achieved atn51 when
m5d. ~For n,1, we expect higher-point correlations to b
significant.! For sharp enough interactions, withn.d11, we
recover uncorrelated initial conditions withm5d/2.

The charge excess at scaleL, as discussed above, is qui
different from the charge excess within a sharp boundary
scaleL, for example inside a sphere of radiusL. The latter
has been proposed as a measure of charge fluctuations
ticularly in Coulombic systems in general dimensions, w
n5d21, where a Gauss’s law applies~see, e.g., Refs
@1,15,16#! and in systems with topological defects@24–26#
where similar integral identities apply to the topologic
charge density. At high temperatures the charge insid
given closed surface is proportional to the square root of
surface area, as obtained from integrating the appropr
random high-temperature field over the surface@26#. Taken
literally, this would imply thatm5(d11)/2 @15#, i.e., larger
charge fluctuations than indicated in Eq.~6! for Coulombic
interactions. However, a sharp surface picks up charge fl
tuations at short scalesin addition to the desired large-scal
fluctuations. Indeed, the Coulombic or high-temperature

FIG. 1. Charge density fluctuationsdr;L2m for equilibrated
high-temperature initial conditions. In the shaded region the ini
conditions are uncorrelated at large scales; in the unshaded re
interactions reduce large-scale charge fluctuations.
-
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ture of the system is moot—arbitrarysharpsurfaces within a
system with microscopic charge heterogeneities~e.g., atoms
or thermal fluctuations! pick up charge fluctuations propor
tional to the square root of the surface area. Useful and
propriate charge fluctuations at scaleL are given by Eq.~6!,
and are not mixed with charge fluctuations at short sca
@27#.

B. Domain profile and currents

Charge fluctuations, coarse grained to scales much la
than typical particle separations, decay via charged curre
These currents can be diffusive, or can be driven by
long-range interactions. We first consider segregated
tems, where the domain sizeL(t) sets the scale of surviving
charge fluctuations. The average density within a dom
r̄; l AA

2d is simply proportional to the initial fluctuations at th
domain scale,dr(L), so that@15#

L; l AA
d/m . ~7!

Charge fluctuations at scales much larger thanL cannot have
relaxed, since charge transport at larger scales is cut of
the domain structure. We nowassume@28# that the domain
profile is only determined by the average densityr̄ and size
L of domains. For example, domains have a typical den
profile

r~r !5 l AA
2df ~r /L !,

; l AA
2d~r /L !a, ~8!

wherer is measured from the edge of the domain. The s
ond equation holds near a domain edge, withr !L. We also
requirer @W, so that the profile is probed well away from
the reaction zone. This scaling form was proposed
Leyvraz and Redner in diffusive systems@7#, and was nu-
merically confirmed ind51.

The assumption of an invariant scaled domain morph
ogy is powerful, and is sufficient to determine the coar
grained current densityJ near the domain edge. The flu
must have a dominant nonzero constant contribution near
domain edge forr !L arising from the evolution of domain
density, since no annihilation takes place in the domain
terior. Consider the net charge of a domain,Q;Ldr̄

;Ld2m. It implies a nonzero net flux densityJ;Q̇/Ld21

;L12m/t near the domain edge. The exponent characteriz
the domain profile,a, is constrained to allow the dominantJ
to be finite but nonzero forr /L→01.

If the dominant current is diffusive, thenJD;r̄/L, so that

JD;L2~11m!. ~9!

Imposing a constant diffusive current condition at the d
main edge implies a linear profile, witha51. This agrees
with studies of domain profiles in diffusive systems@7#.

If the dominant current is driven by long-range force
then it is given by the coarse-grained field times the lo
charge density,JF;r(r )F(r ). The fieldF(r ) at a distancer
away from the domain edge due to the charge distribut
given by Eq.~8! is

l
ion
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TABLE I. Domain profile exponentsa, coarse-grained field a distancer !L from the domain edgeF(r ),
and force-driven fluxJF for different interaction exponentsn. When diffusive fluxes dominate,a51.

a F(r ) JF

n,d 0 Ld2n2m Ld2n22m

d,n,d11 (n2d)/2 r (d2n)/2L (d2n22m)/2 Ld2n22m

n.d11 d/(n1d21) (L/r )d/(n1d21)L2(n11)/2 L2(n1d11)/2
to
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F~r !;E
l AA~r !

L

ddx@r~r 1x!2r~r 2x!#/xn. ~10!

We have used the domain scale as the long-distance cu
and the local interparticle spacingl AA(r );r(r )21/d as the
short-distance cutoff. We also restrict the angular integra
be close to the normal direction from the interface, wh
retains the scaling behavior ofF(r ) without requiring de-
tailed information about the domain shape.

For d.n, charges at distances of orderL determineF, so
that F;r̄Ld2n;Ld2n2m. For a constant fluxJF at smallr,
we must haver(r );const~i.e., a50), so thatJF;r̄2Ld2n

;Ld2n22m. When d.2n, with uncorrelated initial condi-
tions (m5d/2), F increases with the upper cutoff of th
integral in Eq.~10!, so that we should use thesystem size L̀
rather thanL. For this case, the system size enters the
namics, and the thermodynamic limit does not exist@10,11#.

For d,n, the local charge distribution dominates th
F(r ) integral. We can expand the density forx!r , and find
F(r );r(r )(n21)/dr 21 for n.d11. Ford,n,d11, on the
other hand, the integral is dominated by scales aroundr, and
we findF(r );r a1d2n/@ l AA

d La#. Insisting thatJF approaches
a nonzero constant near the domain edge, we obtain Tab
These results apply far from the reaction zone, but otherw
close to the domain edge:W!r !L. ~We determine the
reaction-zone width in Sec. II E.! We see that currents dom
nantly driven by power-law interactions lead to nontriv
domain profiles, with 0<a< 1

2 , in dramatic contrast to the
diffusive case wherea51. It is also interesting that the cur
rent JF has a long-range form ford,n,d11, even though
aÞ0.

When both long-range forces and diffusive effects
present, then we must compareJF and JD , and identify
which is larger at late times. We summarize the results
Fig. 2 for random uncorrelated initial conditions. For equ

FIG. 2. The asymptotically dominant flux starting from unco
related initial conditions (m5d/2). WhenJF dominates, see Table
I; when JD dominates, see Eq.~9!. For equilibrated high-
temperature initial conditions,JD always dominates at late times.
ff,

o

-

I.
e

e

n

brated high-temperature initial conditions,JD is always as-
ymptotically larger at late times.

C. Particle annihilation

In a well mixed region of the system, where the typic
spacing between oppositely charged particles isl AB , what is
the scaling of the particle lifetimet( l AB)? There are three
annihilation mechanisms: diffusive annihilation (tD), local
interaction-driven annihilation (tF), and ballistic annihila-
tion (tB). We determine their scaling dependence onl AB ,
and hence identify the dominant mechanism at late tim
Our essentially microscopic approach also provides ins
into the applicability of coarse-grained treatments~see Sec.
II F!.

In the force-free case, particles move diffusively with d
fusion constantD, and annihilate with oppositely charge
particles when they approach within a fixed distancer c . In
d<2, trajectories are space filling andtD; l AB

2 /D—the time
it takes for a particle to diffusel AB . For d.2, tD

; l AB
d /(Dr c

d22), since each particle must explore the chara
teristic volume per particle to find an antiparticle to annih
late. We have

tD;H l AB
2 , d,2

l AB
d , d.2.

~11!

In the diffusion-free case, considering only local intera
tions f ;r 2n between two particles initially separated b
l AB , the annihilation time

tF; l AB
n11 . ~12!

For many particles in a region, the same result follows fro
the scaling of the velocities in Eq.~2!.

With both diffusion and local interactions, diffusion (tD)
dominates the annihilation time forn.1, while for n,1 the
force (tF) does. This follows directly from the particle dy
namics@Eq. ~2!#. Rescale all distances byl AB , and rescale
time by l AB

2 , so that diffusion is unchanged in the scal
coordinates asl AB increases. Scaled velocities due to t
force are then multiplied byl AB

12n . As a result, forces do no
asymptotically contribute forn.1, while forces dominate
for n,1. Ford.2, this leads to the initially counterintuitive
result that diffusion dominates for 1,n,d21, even though
tD@tF . This is a well-known result forn52 @29#. Essen-
tially, the competition between diffusion and the attracti
interaction is along the separation vector between two p
ticles, and hence is always one dimensional in character
deed, ind51 the faster annihilation mechanism dominate
and the marginal value isn51. We have confirmed thes
predictions for variousn in d<3 by placing a particle and an
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2922 PRE 58A. D. RUTENBERG
antiparticle in a periodic box, and plotting the average an
hilation time as a function of the box size. In Fig. 3, we sho
our results ford53. For n.1, the long-range force merel
changes the effective capture size, leavingtD; l AB

d .
When an applied or nonlocal forceF is present, we mus

also consider ballistic annihilation. With a velocity propo
tional to F, and in a timetB , particles sweep out a volum
proportional totBFl

*
d21 , wherel * is the radius of the effec

tive capture cross section. Equating this to the typical v
ume l AB

d per particle, we obtain the typical ballistic annihila
tion time

tB; l AB
d l

*
12d/F. ~13!

When no noise is present, a particle will be captured by lo
interactions only at separations less thanl * where local in-
teractions are as large asF, so that F; f ;1/l

*
n or l *

;F21/n. We can use the typical forcesF(r ) from Table I,
but must evaluate them at the reaction-zone widthW ~see
below, Sec. II E!—since the reaction zone itself is neutral
a coarse-grained scale. BecauseF depends on the system
morphology, this requires a self-consistent solution@30#. The
results are simple: forn.d we find l * * l AB and the domi-
nant time scale istF , while for n,d we find l * & l AB , and
so the dominant time scale istB . This corresponds to the
naive phase-space result from Eq.~10! that charges from far
away dominate local forces, and hencetB dominates, only
whenn,d.

When diffusive noise is present, we first ignore the lo
interactions and only consider an applied fieldF. For d.2,
both the random walk and the ballistic force sweep out v
ume proportional to time. BecauseF decreases with time,tD
always asymptotically dominates. However, ford<2, ran-
dom walks recur, and the ballistic drift can enhance the v
ume covered by the random walk by suppressing the re
rence. The rate of volume swept out by the drifting partic
is a sphere of radiusl * every Dt; l * /F; l

*
2 /D. This im-

plies l * ;1/F, and leads totB; l AB
d Fd22.

FIG. 3. Annihilation timet( l ) vs sizel of a particle-antiparticle
pair placed in periodic boxes of sizel in d53, where the particles
are initially l /4 apart. They evolve according to Eq.~2! with a
central forcef 51/r n, mobility h51, diffusion constantD5

1
4 , and

time stepdt51. The dashed curves correspond to, from bottom
top, n5

1
2 , 1, 3

2 , 2, 3, and 4. Triangles correspond to purely diff
sive motion. The short solid lines indicate the expected asympt
behavior, witht( l ); l 3/2, l 2, and l 3 ~twice!, from bottom to top,
respectively. Diffusion, withtD; l 3, dominates asymptotically fo
n>1.
i-

l-

al

l

l-

l-
r-
,

When both noise and local interactions are present,
local capture cross sectionl * is determined by the dominan
nonballistic process—i.e.,tD for n.1 andtF for n,1. The
shortest annihilation time for uncorrelated initial conditio
is given in Fig. 4. For equilibrated initial conditions,tD al-
ways dominates forn.1.

Our treatment of particle annihilation is essentially micr
scopic rather than coarse grained, since we have built
particle separationl AB directly into the annihilation times
We have derived our results by considering particle pa
though we have included some multiparticle effects by ne
allowing particles to ‘‘escape’’ further thanl AB from an an-
tiparticle. We apply the results in mixed regions of the sy
tem such as reaction zones.

D. Domain morphology: Segregated or mixed

We assume the system is described by one of two m
phologies@31#, depending on whether coarse-grained cha
fluctuations are comparable to or much less than the m
particle density at late times. The former case describe
segregated morphology with domains of particles sepa
from domains of antiparticles. In the second case, there
mixed morphology with no clearly defined domains. We c
use the dominant fluxJ and fastest annihilation timet to see
which morphology is consistent. The system turns out
have a unique consistent morphology: either mixed or se
gated.

First consider a segregated morphology. The system
domains of scaleL separated by reaction zones of widthW.
Within the zones there is a typical particle spacingl AB . We
ignore correlations or structure within the zones@32#. Our
self-consistency constraints are thatl AB* l AA , and thatW
&L. We impose the former because annihilation takes pl
in the reaction zone but not in the domain bulk, so the d
sity in the reaction zone should be smaller as a result.
impose the latter since if it were not the case, withW@L, the
system would be effectivelyall reaction zone and of a mixe
morphology. These constrain the maximum rate that reac
zones can ‘‘process’’ incoming particles: the average den
of particles that are in reaction zones,WLd21/( l AB

d Ld), is at

o

ic

FIG. 4. Dominant annihilation times for force and noise, wi
uncorrelated initial conditions. Diffusive annihilation (tD) domi-
nates in the shaded region, while ballistic annihilation (tB

; l AB
d Fd22) dominates in the clear region. The regions@ ii 1# and

@ ii 2# correspond to Fig. 5. For equilibrium high-temperature init
conditions, when noise is present,tD always dominates. For force
only annihilation, irrespective of initial conditions,tB

; l AB
d F (d2n21)/n dominates forn,d while tF; l AB

n11 dominates for
n.d.
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FIG. 5. Different regimes of density evolution. Blank regions indicate a segregated morphology, shaded a mixed morphology, a
excluded regimes that have no thermodynamic limit. Dashed lines separate regimes, numbered with Roman numerals, with
reaction-zone structure~see Tables II and III!. The figures correspond to~a! uncorrelated initial conditions, force only;~b! uncorrelated initial
conditions, diffusion and force;~c! enlargement of~b!, with the @ ii 1# –@ ii 5# subregions numbered;~d! equilibrated high-temperature initia
conditions, force only; and~e! equilibrated initial conditions, noise and force.
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most 1/l AA
d . Conversely, the maximum annihilation rate

1/t( l AA), since t( l ) is monotonic. Combining these, th
maximum annihilation rate from reaction zones is] tr̄max;
21/@ l AA

d t( l AA)#. For segregated systems, the actual rate
particles annihilating per unit volume is determined by t
currents entering the reaction zones:] tr̄seg;2JLd21/Ld;
2J/L.

If the maximum reaction rate] tr̄max asymptotically domi-
nates the actual rate] tr̄seg, then a domain structure is con
sistent. Indeed, since] tr̄max is the rate of density decrease
a mixed morphology, the inequality indicates that the ba
ground density decays quickly with respect to the cha
fluctuations—i.e., that the segregated structure occurs w
it is consistent. If the maximum reaction rate is less than
particle flux, then segregated domainscannotbe sustained,
and the mixed morphology should result. For the segrega
morphology, we use] tr̄;2J/L;2 r̄/t and L; l AA

d/m to ex-
tract the domain scale and particle density within the
main.

For the mixed morphology, the flux does not drive an
hilation of the mean density. Rather, every particle is eff
tively in a reaction zone and has a characteristic lifetimet.
Comparing this to the scaling of the density evolution,] tr̄

;2 r̄/t;2 r̄/t, indicates thatt( l AA);t.
The resulting growth law regimes are shown in Fig. 5

systems with either uncorrelated or high-temperature eq
brated initial conditions, and with either force-only or forc
and-noise dynamics. The exponents are summarized in T
II. The noise-only case reproduces the Ovchinniko
Zeldovich-Toussaint-Wilczek result@1#, and is given in Fig.
5~b! by the short-range (n→`) limit of the force-and-noise
dynamics with uncorrelated initial conditions.

We can now consider the consistency of the mixed m
phology. The system has no domain structure, and has l
f

-
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-
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r
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charge separation scalesl AB; l AA . Coarse-grained charg
fluctuations, above a scaleX(t), remain from the initial con-
ditions. The mixed morphology is consistent if the char
density of the remaining charge fluctuationsdr(X);X2m is

much less than the mean particle densityr̄; l AA
2d .

Given the scaling of net currentsJ(X), the charge fluc-
tuations evolve with] tdr(X);dr/t;JXd21/Xd;J/X. For
diffusive currents,JD(X);dr(X)/X;X2(m11), and we find
thatX;t1/2. For force driven currents,F(X);Xd2n2m from
Eq. ~10!, usingX as the upper and lower cutoff. The forc
drives the net charge densitydr(X), and yields a net curren
JF(X);Xd2n22m, leading toX;t1/(m1n112d). Using the re-

sults for l AA from above, we confirm thatdr(X)! r̄ within
the mixed regions of Fig. 5.

Our exponents apply at regime boundaries, where they
continuous. However our approach does not determine
logarithmic factors.@Indeed, logarithmic factors are expecte
at n5d, wheneverJF or tB dominates, due to the logarith
mic divergence of the integral forF, Eq. ~10!.# At a bound-
ary between mixed and segregated regimes, any logarit
present determine the dominant morphology through
self-consistent approach described above. Without lo
rithms, the mixed morphology applies on the boundary, si
W;L there. The widthW characterizes the mean-distance
annihilation for particles, and thus there is a finite density
antiparticles any finite multiple ofW into a domain. When
W;L, there is a finite density of antiparticles arbitrari
deep within a domain—i.e., the system is mixed. This is
case in the diffusion only case atd54, which mixes@2#.

E. Reaction zone

For reaction-diffusion systems with a segregated m
phology, much progress has been made on the structure
evolution of the reaction zones between domains@3–7#. With
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TABLE II. Growth laws of l AA , L, l AB , andJ for the different labeled regimes in Fig. 5. Lengths with the same scaling asl AA are
indicated. The last column indicates the dominant flux mechanism, whereD is diffusive andF is force driven.

d ln lAA /d ln t d ln L/d ln t d ln lAB /d ln t 2d ln J/d ln t J

i 1/(n13) 2/(n13) (n1d11)/@(n1d)(n13)# (n1d11)/(n13) F

ii 0 1/(2n122d) 2/(2n122d) 2n/@(n1d)(2n122d)# 2n/(2n122d) F
ii 1 9 9 l AA 9 F
ii 2 9 9 9 9 F
ii 3 9 9 9 9 F
ii 4 9 9 4n/@3d(2n122d)# 9 F
ii 5 9 9 2n/@(d11)(2n122d)# 9 F

iii (2 n112d)/@n(2n122d)# l AA l AA 9 F

iv8 1
4

1
2 (d12)/@4(d11)# (d12)/4 D

iv9 9 9 (d12)/(6d) 9 D

v8 1/d lAA l AA 2n/(2n122d) F
v9 9 9 9 (m11)/2 D

vi (2d112n)/@d(n13)# 2/(n13) 2(d11)/@(d1n)(n13)# 2(d11)/(n13) F
vi8 9 9 l AA 9 F

vii ( n1nd1d21)/@nd(n13)# l AA l AA 9 F

viii 8 m/(2d) 1
2 (m11)/@2(d11)# (m11)/2 D

viii 9 9 9 (m11)/(3d) 9 D
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long-range interactions, we develop a similar approach
balances the dominant fluxinto the reaction zone with the
dominant annihilation mechanismwithin the reaction zone
This balance determines the reaction zone widthW(t) and
the interparticle spacing within the reaction zone,l AB(t). To
simplify our discussion, we take the density of both spec
to be uniform throughout the reaction zone@32#.

When a particle enters the reaction zone, it travels a ty
cal distanceW before it annihilates—the ‘‘annihilation mea
free path.’’ For a segregated system,W must characterize the
width of the reaction zone. A reaction zone that grows l
rapidly thanW allows almost all particles to pass throug
unannihilated. On the other hand, a reaction zone that gr
more rapidly thanW would provide an infinite number o
annihilation mean free paths ast→`, and would not have a
mix of particles and antiparticles at the far edge of the re
tion zone. Since slower or faster growth is not se
consistent, W(t) characterizes the typical reaction-zo
width.

In the annihilation timet, a particle diffuses a typica
distanceWD;(Dt)1/2, or it ballistically movesWB;Ft un-
der an applied fieldF, whereF is given by Table I. In any
case, a particle must move at least the interparticle spacin
annihilate,WF; l AB . The largest of these widths describ
how far a particle travels before annihilation, and so char
terizes the width of the reaction zone.

The reaction lifetimet, the particle spacing in the reac
tion zone l AB , and the zone widthW are determined self
consistently. Given the dominant fluxJ, we equate the over
all flux density into reaction zonesṄflux;JLd21/Ld, with the
rate of annihilation within the reaction zone
WLd21/@Ldl AB

d t( l AB)#. We choose the largestW for the
givent, and the fastestt for the givenl AB . These dominate
at

s

i-

s

s

-
-

to

c-

the width and annihilation, respectively. This provides a se
consistent solution fort, l AB , andW.

For diffusion-only systems ind<2, our argument is es
sentially that of Leyvraz and Redner@7#. We recover their
results ofW; l AB;t3/8, andt1/3 in d51 and 2, respectively
For d.2, however, we haveW;AtD; l AB

d/2 , since random
walks are no longer space filling, and we obtainl AB;t5/18

and W;t5/12 in d53, and l AB; l AA; 1
4 and W;L;t1/2 in

d54. Our results coincide with the renormalization-gro
scaling results of Lee and Cardy@3#. We also recover their
scaling relations with respect to currents, whenevertD domi-
nates annihilation. In particular, with ] tr̄;J/L
;W/(Ll AB

d tD), tD from Eq. ~11!, andWD;AtD, we have
WD;J21/3 and l AB;J22/(3d) for d.2 and WD; l AB

;J21/(d11) for d,2. These relations hold independently
the process that dominates the currents.

Even within the mixed morphology, it is interesting t
consider the distanceW a particle travels in a lifetimet. This
distanceW(t) is the same scale as the remaining charge fl
tuations,X(t), as discussed above in Sec. II D. This is re
sonable, since charge fluctuations at scales much larger
W cannot be flattened out by charge motion. We summa
our results in Table III.

F. Discussion

In all cases the density decays more slowly asn increases,
as the potential becomes sharper and hence shorter rang
noise is present, then diffusive processes eventually do
nate asn increases. As the spatial dimensiond is increased
for any n, then a mixed morphology is eventually reache
For generalized Coulombic systems, withn5d21, the den-
sity decays asr̄;1/t in all combinations of high-temperatur



PRE 58 2925REACTION ZONES AND QUENCHED CHARGED- . . .
TABLE III. Growth laws of W, t, and l * for the different labeled regimes in Fig. 5. Reaction-zone widthsW with the same scaling as
l AB are indicated. The dominant mechanisms determiningW and t are also indicated, whereD is diffusive, F is force driven, andB is
ballistic. Note that when the morphology is mixed,t;t andW indicates the scale of remaining charge fluctuations.

W d ln W/d ln t t d ln t/d ln t d ln l* /d ln t

i F l AB F (n11)(n1d11)/@(n1d)(n13)# —

ii0 F l AB F 2n(n11)/@(n1d)(2n122d)# —
ii1 B (d212n2nd2d)/@n(2n122d)# B 11d(d2n21)/@n(2n122d)# (2n2d)/@n(2n122d)#

ii 2 B (d212n22nd)/(2n122d) B (d214n22nd2d)/(2n122d) 9

ii 3 B 2(d2n)/(2n122d) D d/(2n122d) —
ii 4 D 2n/@3(2n122d)# D 4n/@3(2n122d)# —
ii5 D l AB D 4n/@(d11)(2n122d)# —

iii B 2/(2n122d) B 1 (2n2d)/@n(2n122d)#

iv8 D l AB D (d12)/@2(d11)# —
iv9 D (d12)/12 D (d12)/6 —

v8 B 2/(2n122d) D 1 —
v9 D 1/2 D 1 —

vi F l AB F 2(d11)(n11)/@(d1n)(n13)# —
vi8 B (2n1nd112n22d)/@n(n13)# B (3n1nd112d)/@n(n13)# (n11)/@n(n13)#

vii B 2/(n13) B 1 9

viii 8 D l AB D (m11)/(d11) —
viii 9 D (m11)/6 D (m11)/3 —
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or uncorrelated initial conditions and force and/or diffusi
processes. They are always of mixed morphology.

With equilibrated initial conditions, diffusive processe
dominate independently ofn when they are present. This
reasonable, since the high-temperature initial conditions
ance the interactions with temperature. Temperature then
comes more relevant as it is reduced during the quench

For systems without diffusive processes, the growth
gimes and processes for uncorrelated and high-tempera
initial conditions, in Figs. 5~a! and 5~d!, respectively, corre-
spond. The various growth exponents differ only due to
different initial charge fluctuations, characterized bym. On
the other hand, with both diffusive and long-range proces
the regimes do not correspond, between Figs. 5~b! and 5~e!,
because the competition between force and diffusive p
cesses depends on the charge fluctuations throughm.

Exponents are continuous at regime boundaries forl AA ,
l AB , L, t, and W. For segregated systemsL*W* l AB
* l AA , where the last inequality holds since reactions sho
decrease the particle density. We also check thatt&t in all
cases. Ind51, we checkW; l AB , as expected since th
reaction zone is precisely oneAB pair. At the border be-
tween mixed and segregated morphologies, the reaction
is maximal, i.e.,W;L and l AB; l AA .

The particle density at the edge of a domain, atr;W in
Eq. ~8!, scales the same as the particle density within
reaction zone,l AB

2d . i.e., that l AB
2d; l AA

2d(W/L)a. Interesting
special cases occur whereJF dominates the flux butWD
dominates the reaction-zone width~regions@ ii 4# and @ ii 5#).
In these special cases, the singular domain profile, witha
,1, leads to a diverging diffusion flux as the domain edge
approached, which must eventually dominate at some
l-
e-

-
re

e

es

o-

ld

ne

e

s
s-

tanceLX from the domain edge. In particular,LX is deter-
mined byr(LX)/LX'JF . Using the domain profile@Eq. ~8!#,
we haveL2m2aLX

a21;JF . If LX!W, then the crossover is
preempted by the reaction zone and we do not expec
observe it@33#. However, precisely whenJF andWD domi-
nate we find thatWD!LX!L, so that a linear transition
regime is expected forWD!r !LX . The intermediate linear
regime, when it occurs, does not change the density ev
tion or reaction-zone structure, sinceJF still characterizes the
flux.

In reaction-diffusion systems,dc is the critical dimension
above which a coarse-grained reaction ratelrArB applies,
anddu can be defined as the dimension above which we
neglect inhomogeneities. Belowdc the reaction term is no
given byr2 in a coarse-grained description, and local dens
fluctuations must be taken into account@3,8#. Above du we
can ignore spatial gradients and have] tr̄;2 r̄2, and hence
r̄;1/t ~see Ref.@1#!. Both of these effects stem from th
diffusive annihilation mechanism. The local annihilation ra
r/tD is proportional tor2 only for d.2 wheretD;r21.
This setsdc52. The mixed state is found ford>4, so that
du54.

When only long-range interactions are included, the
definitions are not as useful since neithertF nor tB are in
general proportional tor21. As an example, when only
force-driven evolution is included, as in Figs. 5~a! and 5~d!,
the density in themixedstate has ad-dependent exponent
see regions@iii # and @vii #. Even the long-wavelength charg
fluctuations remain relevant to drive the dominant ballis
annihilation. We could describe this asdc5du5`.

When diffusive and long-range processes are includ
however, we see from Table III that the diffusive proce
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tD; l AB
d dominates abovedc52, so that the critical dimen

sion is unchanged from the diffusion-only case. In mix
morphologies diffusive annihilation always dominates,
that du equals the dimension where the mixed morpholo
starts. For uncorrelated initial conditions we finddu5n11
for n,3, while du54 above. For high-temperature initia
conditionsdu5(n13)/2 for n,5, whiledu54 above. Since
diffusive processes dominate all regimes in Fig. 5~e!, it is
only through the suppression of initial charge fluctuatio
that the long-range interactions modifydu .

We have assumed that the domains of the segregated
phology are characterized only by a sizeL and characteristic
particle separationl AA , and that the reaction zones are sim
larly characterized by a widthW and a particle separatio
l AB . This leads to the exponents summarized in the tab
and figures. It remains possible that other lengths enter
the asymptotic evolution, for instance through fluctuations
the shape of domain boundaries~see, e.g., Ref.@8#!. Our
results are most robust forn,d, where only the domain
scaleL enters in the calculation of the forces and curren
Because of that, we obtain the same result for the evolv
density in a segregated morphology after a coarse grainin
O(L), and any new but shorter lengths would not chan
this result. It remains possible, however, that additio
lengths change the structure of the reaction zone, and h
change the boundary between segregated and mixed
phologies. Similarly, higher point correlation effects m
lead to more intermediate morphologies within what we
bel the mixed regime. Forn.d additional lengths would
affect the evolution of the density, since short scales e
into the calculation of the characteristic forces and curre

Spatial fluctuations of coarse-grained quantities have
been neglected in our treatment. Weassumethat fluctuation
effects are not strong enough to change our results for e
nents. Another way to view fluctuations is in terms of t
distribution of various quantities. We effectively assume t
distributions have negligible tails.

We have also not included the motion of domain boun
aries, either from local heterogeneities in domain density
from differing mobilities of the particle species. Domain m
tion should not affect the scaling exponentsif the boundaries
move slowly enough for the domain profilea to maintain
itself. A simple check is reassuring. The flux required
move domain interfaces,Jmotion;r̄L̇;r̄L/t, has the same
scaling behavior as the characteristic flux,J;L] tr̄. Hence
domain wall motion should introduce no new scales.

III. PREVIOUS LONG-RANGE WORK

Some of the earliest work on chargedA1B→ systems
with long-range interactions was by Toyoki@10#. He treated
uncorrelated initial conditions and force-only evolution
corresponding to Fig. 5~a!. He presented a mean-field anal
sis of the mixed morphology, our region@iii #. By considering
the mean-square force on a particle, he recovered the sys
size dependence forn,d/2. He also initiated numerical stud
ies of d52 systems. However he used a short-scale cu
proportional to the average particle separationl AA ~see Sec.
VII !, which hampers interpretation of his results. Janget al.
@16# numerically studiedd52 systems withn51, and ob-
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tained r̄;t20.55 using a large noise amplitude, andr̄
;t20.90 using a large force amplitude. This is consistent w
our results ofr̄;t21/2 andr̄;t21 for the pure noise or pure
force systems, respectively.

Ispolatov and Krapivsky@11# focused on force-only evo
lution in d51, with a segregated morphology. They obtain
results consistent with ours forn,d, where their assumption
of a constant domain profile, witha50, is valid~see Table I
and Sec. VIII!.

Ginzburg, Radzihovsky, and Clark@12# treated coarse-
grained hydrodynamic systems with uncorrelated initial co
ditions and with both diffusion and long-range forces, forn
>d21. Our particle-based treatment can be seen as com
mentary to their work. We obtain the same results for den
evolution, but we also obtain details about the reaction z
—including W, l AB , and t. We also identify the mixed or
segregated morphology of the system. Furthermore,
system-size dependence in the force forn,d/2 @10,11# was
missed in their treatment. It would be interesting to exte
their approach to include the particle nature of the charg
possibly with new phenomenological annihilation term
Burlatsky, Ginzburg, and Clark@13# presented a simple sca
ing model that obtains the same results as the self-consis
approach of Ref.@12#.

IV. ELECTRONIC SYSTEMS

Asymptotic nongeminate pair recombination in cle
crystalline semiconductor systems should be described
our approach withn52 and equilibrated high-temperatur
initial conditions. In d53, we find r̄;t21 with a mixed
morphology. This result applies for every combination
uncorrelated or high-temperature initial conditions. This
becauseall annihilation mechanisms have the same scali
t; l AB

3 .
In contrast, ford,3 the annihilation mechanisms diffe

and the morphologies are allsegregated. The structure of the
evolving charge fluctuations is thus much richer. Spec
cally, in d51 and 2 we expect regime@viii 8# to apply as-
ymptotically with r̄;t21/4 andt23/4, respectively. The decay
rate is dramatically slowed due to the segregated morp
ogy.

Cleand52 systems exist in quantum Hall effect~QHE!
devices. QHE devices with Skyrmion charge excitatio
~see, e.g., Ref.@34#! may be particularly good systems t
study these effects, due to their low mobilities and slow d
namics combined with sensitive time-resolved probes
their particle density. We will develop this in more detail
a separate publication@35#, paying particular attention to the
scaling of the amplitudes and the resulting preasympt
crossovers in the evolution.

V. PARTICLELIKE TOPOLOGICAL DEFECTS

Pointlike topological defects, e.g., hedgehogs ind53 or
vortices ind52, are found in liquid crystals and in vecto
O(N) systems ind5N dimensions. Considered pairwis
these defects have power-law interactions. Indeed, early
oretical work@10# on these systems was based on the in
actions of pointlike topological defects. However the evo
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tion of systems with pointlike topological defects is differe
than the dynamics of Sec. II~see, however, Ref.@36#!. The
order parameter field that supports topological defects p
vides a scale-dependent mobility to particle motion. Ad
tionally, the mobility depends on the local environment, i.
the interaction between defects is not a two-point partic
particle interaction. We may, however, take that as a fi
approximation. Ford52 XY or nematic systems, the mo
bility scales logarithmically with the particle velocity,h( l )
;1/ln(dl/dt) @19#. For d53 O(3) or nematic systems, th
mobility of hedgehogs scales as the inverse separa
h( l );1/l @37#. In general, forO(N) models inN>3 dimen-
sions,h( l ); l 22N @19#. High-temperature equilibrated initia
conditions are appropriate for quenches in physical syste
For point defects ind>3, the effective interaction is linea
@10# (n50), which has not been treated in this paper. Ho
ever,d52 systems are within our purview.

For thed52 XY model, interactions between defects a
logarithmic (n51). Ignoring the logarithmic mobility, and
including equilibrated initial conditions@27#, we have a
mixed morphology with all lengths scaling the same,l AA
; l AB;L;W;t1/2. This is found whether or not diffusive
processes are included, and indeedtD;tB;tF; l AB

2 and
JD;JF;L23 for this system. The single length scale and t
similarities between no noise quenches and quenches
diffusion matches the phase ordering results of thed
52 XY model @19,38#.

Two phase-ordering systems that do exhibit strong sca
violations are the d51 XY model @39# and the d
52 O(3) model@40#. Both of these systems support non
ingular topological textures that have particlelike aspe
However, topological textures have an intrinsic length sc
that evolves in time. Significant extensions to our appro
would be necessary for these systems. We may also con
interacting topological defects in the patterned structures
driven ~see, e.g., Ref.@41#! systems or of systems with com
peting interactions~see, e.g., Ref.@42#!. To apply our ap-
proach, the long-wavelength fluctuations (m), the interaction
(n), the mobility h( l ) and the nature of any noise-drive
transport must be identified.

VI. LÉ VY SUPERDIFFUSION

Systems with long-range Le´vy superdiffusion@43# have
been used to model stirred reaction-diffusion systems. W
there are no long-range interactionsper sein these systems
superdiffusion enhances the reaction rate in a manner q
tatively similar to long-range interactions. Indeed, our me
ods can be applied to this case and agree with the resul
Ref. @17# for the late-time evolution from uncorrelated initia
conditions. We also obtain additional information about t
reaction-zone structure and interface profiles for segreg
morphologies. For simplicity, we only consider uncorrelat
initial conditions, withm5d/2.

In the discrete formulation of Le´vy flight, every particle
hops a random distancer along a random lattice directio
with probability distributionP(r )}r 212g—annihilating any
antiparticles it encounters along the way. We impose 1,g
,2, so that the hop distribution has a finite first moment a
is normalizable. The equivalent continuum dynamics
] trk52Dukugrk , whereg.1 is required.
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In time t, taken to be large, a particle randomly Le´vy
walks a distanceR;t1/g. If g.d, the volume bounding this
walk Rd!t and the walk is recurrent, or space filling. Co
versely, ifg,d the walk is sparse, and the particle explor
a volume proportional tot using its finite capture radiusr c .
Paralleling Eq.~11!, the annihilation time in a well-mixed
region of the system scales as

tL;H l AB
d , g,d

l AB
g , g.d,

~14!

where the typical particle-antiparticle separation in the
gion is l AB . From the Le´vy flight, the net distance that th
particles move before annihilating isW;tL

1/g . For space-
filling walks (g.d) W; l AB , while for sparse walks (g
,d) W; l AB

d/g@ l AB .
For a segregated morphology, there is a typical flux d

sity leaving domains. The flux density is most easily o
tained in the discrete formulation, where it is simply th
number of particles that pass through a site in each time s
From the Lévy flight distribution, a fractionp;1/xg of par-
ticles contributes to the current from a given distancex away.
Only particles along lattice directions contribute in a sing
time step, and, sinceg.1, the flux is dominated by particle
nearby compared to the domain scale. Hence our curre
J(r );*0

r dy@r(r 1y)2r(r 2y)#/yg a distancer from a do-
main edge, whereW!r !L. Using the domain profile from
Eq. ~8!, and requiring thatJ(r ) approaches a constant ne
the domain edge, we obtain a nonlinear profile exponena

5g21, andJL;r̄L12g, for the particle current.
For segregated systems, we equate the flux out of dom

] tr̄;JLd21/Ld; l AA
2(d12g) to the time derivative of the

charge densityl AA
2d/t to obtain l AA;t1/(2g) and r̄;t2d/(2g).

The domain sizeL;t1/g. We can also obtain the rate o
particle annihilation from the reaction rate within the rea
tion zones,] tr̄;WLd21/@Ldl AB

d tL#, and compare to obtain

l AB;H t ~d12g22!/[2d~2g21!] , g,d

t ~d12g22!/[2g~g1d21!] , g.d.
~15!

Since particles are randomly Le´vy walking before annihila-
tion, the reaction-zone width isW; l AB for d,g, and W
; l AB

d/g for d.g.
The system has a segregated morphology, withW&L

; l AA
2 , for g.d/2. Forg,d/2 the system is mixed, and th

time scale is set by the annihilation ratetL;t, so thatl AA

;t1/d and r̄;1/t. At g5d/2, the marginal case betwee
segregated and mixed morphologies, we haveW;L and
l AB; l AA . Our results agree with those of Ref.@17#. We also
obtaina, l AB , andW characterizing the domain profile an
reaction zone in segregated systems.

It is interesting that while our results are qualitative
similar to those obtained with long-rangeinteractions, there
is no effective interactionn that recovers the growth expo
nents for a given Le´vy exponentg. This is in contrast to the
nonequilibrium steady-state properties of the kinetic Is
model, where Le´vy flights generate effective long-range in
teractions@44#.
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We may be able to apply these results to the motion o
single charged particle in a quenched random potential. T
motion is subdiffusive, withg.2 andR;t1/g, for potentials
with sufficiently long-range correlations@45#. One loop
renormalization-group calculations by Park and Deem@18#
for potentials caused by quenched Coulombic ions ind
52 (n51), matched to the asymptotic evolution witho
disorder, indicate that subdiffusive behavior alone may
sufficient to describe the evolution of the quenched syst
If so, then our Le´vy flight results may be directly applie
with the appropriateg. However, significant questions re
main, such as the appropriate microscopic annihilat
mechanisms for oppositely charged particles in a quenc
random potential.

VII. LONG-RANGE CUTOFFS

It is interesting to explore quenched long-range syste
numerically, but the computational burden can be lar
Long-range cutoffsLcut(t), usually on the order of the inter
particle spacing, accelerate a simulation, but often at the
of changing the physics.

Long-range cutoffs contribute in two places. The first
through the force integral driving particles fluxes,F(r ) in
Eq. ~10!. Any Lcut!L(t) replaces the upper cutoff of th
integral and changesF(r ) for the cases where the integral
not dominated by short scales, i.e., forn,d11. If F(r ) is
changed, the domain profile exponentsa are also affected
The second place cutoffs enter is through the annihila
time within the reaction zone@Eq. ~12!#. If the cutoff is
smaller than the reaction-zone spacing,Lcut! l AB(t), then the
annihilation dynamics oftF is changed. Ballistic annihilation
timestB is qualitatively changed wheneverLcut!L(t). Am-
plitudes can also be affected by cutoffs, even when gro
exponents are not.

As an illustration, we consider limiting interactions
nearest neighbors. Consider uncorrelated initial conditi
with no diffusion @Fig. 5~a!#. For nearest-neighbor interac
tions, we useLcut; l AA(r );r(r )21/d, the local particle spac
ing. PuttingLcut instead ofL in Eq. ~10! leads to the same
results asn.d11 in Table I for all n. In particular, the
reaction-zone profile is characterized bya5d/(n1d21).
The nearest-neighbor cutoff is of orderl AB within the reac-
tion zone, so that local force-driven annihilation dynami
with tF , is qualitatively unchanged. The system size can
enter the force integral, so there is no restriction on the
teraction ton.d/2. For a segregated morphology, regime@i#
applies, while in the mixed regime@iii # does, though with
W; l AB and annihilation throughtF . Comparing the particle
annihilation rate] tr̄;J/L to the maximum rate supported b
reaction zones] tr̄max;r̄/tF(lAA);1/l AA

n1d11 , we find that
segregation occurs for alld,3. In summary, nearest
neighbor interactions only leave the evolution qualitative
unchanged forn.d11. A numerical test of the effects o
nearest-neighbor interactions ind51 is made in Sec. VIII.

VIII. NUMERICAL INVESTIGATION

We present some numerical results on the nontrivial
main profile exponenta in uncorrelated one-dimensiona
systems without diffusion. We also consider the effect o
a
is

e
.

n
ed

s
.

st

n

th

s

,
t
-

-

a

cutoff Lcut limiting interactions to nearest neighbors. Mo
results will be presented in future work@35#.

In d51, we expecta5(n21)/2 for 1,n,2 ~regime
@ ii 0#) anda51/n for n.2 ~regime@i#!. We studied systems
with 8000 particles withn5 3

2 ~375 samples! andn52 ~300
samples!. We expecta5 1

4 and 1
2 , respectively. We avoided

finite-size effects by comparisons with size 4000 syste
We also considered systems with only nearest-neighbor
teractions, which are expected to modify the domain pro
for n,2; see Sec. VII. In particular, we expect regime@i# to
apply for all n,2. For n5 3

2 , we expecta5 2
3 . We studied

systems with 128 000 particles withn5 3
2 ~200 samples! and

n52 ~53 samples!, and checked finite-size effects with sy
tems of 32 000 particles. We found results consistent w
expectations. We show our results for the domain profiles
Fig. 6.

IX. CONCLUSIONS

By considering the annihilation dynamics in well mixe
regions of a charged-particle system, and balancing the
nihilation against currents driven by charge inhomogenei
left over from the initial conditions, we self-consistently d
termine the morphology and evolution of quenched charg
particle systems with long-range interactions. We also c
tribute a visceral description of the dynamics. W
characterize the system with the scale of domainsL and re-
action zonesW, and the particle spacings within domainsl AA
and reaction zonesl AB . For mixed systemsL; l AA; l AB .
Our results are summarized in Fig. 5, and in the three tab
Our primary assumption is that the lengths we have used
sufficient to characterize the evolving system. The scal
form for the domain profile@Eq. ~8!# follows from this as-
sumption.

The results of this paper will hopefully inspire more fo
mal derivations and numerical tests, as well as experime
tests in electronic systems. Comparisons with existing tre
ments is encouraging, particularly agreement with the fie
theory approach of Lee and Cardy@3# for reaction-diffusion
systems, with the hydrodynamic treatment of Ginzbu

FIG. 6. Average domain profilef (x) vs scaled distancex from
the edge of the domain. From top to bottom aren5

3
2 @at t51.9

31025 ~dashed! and 0.0013~solid!#, n5
3
2 (t50.0038 and 0.09 for

dashed and solid, respectively! with nearest-neighbor interactions
and n52 (t51.931025 and 0.25, respectively! with nearest-
neighbor interactions; all are ind51. The second and third sets o
curves have been scaled by 0.5 and 0.1, respectively. The str
segments indicate the expected domain profiles:a5

1
4 , 2

3 , and 1
2 .

The crossover at smallx is due to the reaction zone, and moves
smaller scaled distance at later times.
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Radzihovsky, and Clark@12# for uncorrelated initial condi-
tions with diffusion and long-range interactions, and with t
Lévy superdiffusion results of Ref.@17#. There are also many
results pertaining to reaction zones, domain profiles, and
tems with equilibrated high-temperature initial conditions

Electronic systems (n52) in two dimensions should pro
vide an experimental test for our results. Asymptotically,
predict a segregated morphology with domain sizeL;t1/2

and average densityr̄;t23/4 for photoexcited quantum-wel
or QHE systems~high-temperature equilibrium initial condi
tions, regime@viii 8/viii 9#). This will be explored at more
length in a separate publication@35#. If uncorrelated initial
conditions can be manufactured, then we expect reg
.

ap

in

ed

v.

E

k,

et

po
le
s-

e

@ iv8/ iv9/ ii 4/ ii 5# to apply: a segregated morphology withL
;t1/2 and r̄;t21/2. These contrast dramatically with th
mixed morphology and density decayr̄;t21 in three-
dimensional electronic systems.
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